Library of prefabricated locked nucleic acid hydrolysis probes facilitates rapid development of reverse-transcription quantitative real-time PCR assays for detection of novel influenza A/H1N1/09 virus.
نویسندگان
چکیده
BACKGROUND The emergence of a novel pandemic human strain of influenza A (H1N1/09) has clearly demonstrated the need for flexible tools enabling the rapid development of new diagnostic methods. METHODS We designed a set of reverse-transcription quantitative real-time PCR (RT-qPCR) assays based on the Universal ProbeLibrary (UPL)--a collection of 165 presynthesized, fluorescence-labeled locked nucleic acid (LNA) hydrolysis probes--specifically to detect the novel influenza A virus. We evaluated candidate primer/UPL-probe pairs with 28 novel influenza A/H1N1/09 patient samples of European and Mexican origin. RESULTS Of 14 assays in the hemagglutinin (HA) and neuraminidase (NA) genes, 12 detected viral nucleic acids from diluted patient samples without need for further optimization. We characterized the diagnostic specificity of the 2 best-performing assays with a set of samples comprising various influenza virus strains of human and animal origin that showed no cross-reactivity. The diagnostic sensitivity of these 2 primer/probe combinations was in the range of 100-1000 genomic copies/mL. In comparison to a reference assay recommended by the German health authorities, the analytical sensitivities and specificities of the assays were equivalent. CONCLUSIONS Facing the emergence of novel influenza A/H1N1/09, we were able to develop, within 2 days, a set of sensitive and specific RT-qPCR assays for the laboratory diagnosis of suspected cases. H1N1/09 served as a model to show the feasibility of the UPL approach for the expedited development of new diagnostic assays to detect emerging pathogens.
منابع مشابه
Development and Evaluation of Real-Time Reverse Transcription Polymerase Chain Reaction Test for Quantitative and Qualitative Recognition of H5 Subtype of Avian Influenza Viruses
Avian influenza viruses (AIV) affect a wide range of birds and mammals, cause severe economic damage to the poultry industry, and pose a serious threat to humans. Highly pathogenic avian influenza viruses (HPAI) H5N1 were first identified in Southeast Asia in 1996 and spread to four continents over the following years. The viruses have caused high mortality in chickens and various bird species ...
متن کاملDuplex real-time reverse transcriptase PCR assays for rapid detection and identification of pandemic (H1N1) 2009 and seasonal influenza A/H1, A/H3, and B viruses.
Reports of a novel influenza virus type A (H1N1), now designated by the World Health Organization as pandemic (H1N1) 2009, emerged from the United States and Mexico in April 2009. The management of the pandemic in Australia required rapid and reliable testing of large numbers of specimens for the novel influenza strain and differentiation from seasonal influenza strains. A real-time reverse tra...
متن کاملDesign and validation of real-time reverse transcription-PCR assays for detection of pandemic (H1N1) 2009 virus.
Tracking novel influenza viruses which have the potential to cause pandemics, such as the pandemic (H1N1) 2009 virus, is a public health priority. Pandemic (H1N1) 2009 virus was first identified in Mexico in April 2009 and spread worldwide over a short period of time. Well-validated diagnostic tools that are rapid, sensitive, and specific for the detection and tracking of this virus are needed....
متن کاملDevelopment and Evaluation of Real-Time RT-PCR Test for Quantitative and Qualitative Recognition of Current H9N2 Subtype Avian Influenza Viruses in Iran
Avian influenza H9N2 subtype viruses have had a great impact on Iranian industrial poultry production economy since introduction in the country. To approach Rapid and precise identification of this viruses as control measures in poultry industry, a real time probe base assay was developed to directly detect a specific influenza virus of H9N2 subtype -instead of general detection of Influenza A ...
متن کاملDevelopment of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses
Background and objective:Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 55 12 شماره
صفحات -
تاریخ انتشار 2009